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ABSTRACT

We developed a plane wave theory to study electromagnetic diffraction by plane reflec-
tion diffraction gratings of infinite extent. A computer program was written to calculate the
energy distribution in the various orders of diffraction for the cases when the electric or
magnetic field vectors are parallel to the grating grooves. We ran test cases and compared our
results with those found in the literature. Within the region of validity of this theory, our re-
sults were in excellent agreement with those in the literature. Energy conservation checks
were also made to determine the region of validity of the plane wave theory. The computer
program was flexible enough to analyze any grating profile that could be described by a sin-
gle value function f(x). Within the region of validity the program could be used with
confidence.

The computer program was used to investigate the following:
(a) Polarization Properties of the Diffraction Grating. For an echelette grating profile, we

were able to determine the wavelength at which the grating would completely linearly
polarize the light in a prespecified order for any general state of incident polarized light.

(b) Blaze Properties of the Diffraction Grating. For a similar echelette grating profile,
we determined the wavelength at which the blaze efficiency would be a maximum. Our cal-
culation, which was done for the case when the electric field vector is parallel to the grating
grooves, indicated that a blaze efficiency as high as 0.99 in the -1st order could be obtained
when the double Woods anomaly condition was satisfied. The wavelength, grating period,
and angle of incidence necessary to give the double Woods anomaly condition also satisfied
the Bragg condition.

The study was extended to determine what effect an echelette grating profile with
rounded edges would have on the blazing properties of the grating. We found that in the
worst rounding case, where 50% of the blaze facet is flat, the blaze efficiency of the -1st
order had dropped to a value of only 0.91. The rounded edge case is of practical importance
because such grating profiles can now be made on a photoresist material using the holo-
graphic process with grating periods on the order of I um.
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1. INTRODUCTION

One of the most important optical devices used in spectroscopy to study the frequency
composition of light is the diffraction grating. Diffraction gratings consist of an assembly of
narrow grooves and are used in either the transmission or the reflection mode. Unlike
prisms, with which the incident energy in a given wavelength appears in only one direction,
diffraction gratings split the incident beam into a number of diffracted beams that leave the
grating at different angles. These diffracted beams are commonly referred to as diffraction
orders. The angular distribution of these diffraction orders is given by the well-known grat-
ing equation

sin0i + sin0m = m(X/a) (1.1)

where

Oi = angle of incidence
Om = angle of diffraction of order m
m = integer
X = wavelength of light
a = diffraction grating period.

It is obvious from the grating equation that the zero-order diffracted beam (m = 0) is merely
a specular reflection off the grating plane. The zero order is also a nondispersive order; that
is, the zero-order diffraction angle 00 is independent of the wavelength X. It is for this rea-
son that the zero order is of little interest. Dispersion will occur in orders other than the
zero order if they are real. That is, real or homogeneous diffraction orders are those for
which the inequality

IsinOm I < 1 (1.2)

is satisfied, which implies

-r/2 < Om < +7r/2 . (1.3)

Solving the grating equation for Om yields

Om(X) = sill' [m(X/a) - sin0e], (1.4)

which shows that the diffraction angle Om is a function of X for m $ 0. It is the real disper-
sive orders that are of physical interest. The grating equation also predicts the occurrence of
evanescent orders. That is, for fixed values of a, X , and Oi, there are values of +m for which
the inequality

IsinOr, I> I (1.5)

is satisfied and yields nonphysical angles Om. Orders for which the inequality ( 1.5) is satis-
fied are commonly referred to as evanescent or inhomogeneous diffraction orders.
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The study of diffraction gratings is relatively old and has been the subject of numerous
theoretical and experimental investigations. Past calculations based on scalar models of dif-
fraction have yielded unsatisfactory results owing to the fact that diffraction gratings, in
general, tend to polarize the diffracted light and to produce energy distributions in the vari-
ous diffraction orders. These distributions differ as a function of wavelength and angle of
incidence for two orthogonal states of polarization, and neither distribution agrees with the
predictions based on scalar models. Therefore, in order to take into account the polarization
properties of light as well as to properly study the energy distribution properties of diffrac-
tion gratings, whether they be conventionally ruled gratings or the new holographic gratings,
a rigorous electromagnetic theory must be employed because the interaction of light with a
grating is by nature an electromagnetic boundary phenomenon 

A review was made of recently published articles that discuss the rigorous electromagnetic
models used to predict energy distributions in the various diffraction orders. Based on this
review, a computer program was written to calculate the energy distribution in the various
diffraction orders for perfectly conducting, plane periodic reflection gratings of infinite
extent. The present computer program can be used successfully only for the analysis of
shallow-groove gratings. With this program a detailed analysis of the energy distribution
among the various orders can be made based on the inputs of groove profile, grating period,
angle of incidence, polarization state, and the wavelength of light. The computer program
was used to investigate the polarizing and blaze properties of a diffraction grating with an
echelette profile. Recently it was demonstrated that gratings with echelette profiles with
slightly rounded edges can be holographically made. The blaze properties of this profile
were also investigated. Presented in this report are the results of this investigation.
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2. VECTOR DIFFRACTION

With the recent availability of holographic optical gratings' and high-resolution, ruled dif-
fraction gratings,2 a new interest in the solution to the problem of determining the distribu-
tion of energy scattered in various orders of diffraction from a grating has arisen. The prob-
lem is relatively old and has been the subject of numerous theoretical and experimental
investigations. It is well known that past calculations based on scalar models of
diffraction3 ,4 have yielded unsatisfactory predictions of the distribution of diffracted en-
ergy as a function of incidence angle and wavelength. This has occurred because gratings will
tend to polarize the diffracted light and produce energy distributions that differ for two
orthogonal states of polarization and that do not agree with the predictions based on scalar
models.5

To take into account the polarization properties of the diffracted light as well as to ex-
plain the discrepencies that have resulted between experimental and theoretical predictions
based on scalar models, rigorous vector models based on classical electromagnetic theory
have recently been developed.s - ' A rigorous electromagnetic theory must be employed be-
cause the interaction of light with a grating is by nature an electromagnetic boundary phe-
nomenon. In fact experiments have shown that the electromagnetic character of light mani-
fests itself predominantly when the grating constant becomes comparable to the wavelength
of light that is of interest.'

We have reviewed the recently published articles-5 0 that discuss the rigorous electromag-
netic models for predicting energy distribution. Based on this review, we have developed a
computer program that calculates the energy distribution for perfectly conducting, plane
periodic gratings of infinite extent. The theoretical basis for this computer program is the
hypothesis that the diffracted field can be represented by a discrete spectrum of plane
waves. The problem then is to determine the amplitude coefficients of each of these various
discrete diffraction orders based on the boundary conditions on the grating surface that are
to be satisfied by the total electromagnetic field. Our mathematical approach parallels that
of Meecham ' 0 although we believe our approach is more easily implemented for computer
use.

Because the light incident on a diffraction grating is, in general, either unpolarized or po-
larized in various ways, the solutions for two orthogonal polarization states are necessary. In
the analysis of plane reflection diffraction gratings, it is usually assumed that the incident
light is a plane wave with the propagation vector lying in a plane perpendicular to the
grooves of the grating. This being the case, it is convenient to consider the two orthogonal
polarization cases when the incident electric and magnetic field vectors are parallel to the
grating grooves. These two cases are commonly referred to as the transverse electric (TE),
also called E-parallel, and transverse magnetic (TM), also called H-parallel, cases, respec-
tively. We now present the underlying theory that forms the basis of our computer program
for calculating the energy distribution in the various diffraction orders arising from a per-
fectly conducting, plane periodic grating of infinite extent.

2.1 Theory

The theoretical bases for this computer program are the assumptions that the incident
field is a monochromatic electromagnetic plane wave with the wave propagation vector lying
in a plane perpendicular to the grooves of the grating and that the diffracted field can be
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represented as a linear combination of plane waves. The problem is to determine the un-
known amplitude coefficients associated with each of the plane waves comprising the dif-
fracted field by satisfying the electromagnetic boundary conditions at the surface of the dif-
fraction grating. With a knowledge of the amplitude coefficients, the energy distribution can
be readily calculated.

2.1.1 Theory for the TE case

Figure 2.1 depicts the diffraction geometry. The grating profile is described by the equa-
tion Y, = J(x), and has period a. The grooves of the grating are parallel to the z axis.

V

incident beaam

A
p

,1i diffraction
- em in order

V _ _ b x~~~~.

Fig. 2.1. Diffraction grating geometry.

Because the incident field is a monochromatic electromagnetic plane wave with the wave
propagation vector lying in the xy plane and the electric field vector parallel to the z axis,
then the wave function associated with the incident field is given by

Ei(x,v,z.t) = [O.O,Eiz(x.yv.)] exp(-iot), (2.1)

and the time-independent part of the wave function is given by

Eiz(x,y,z) = E, exp(-ikx sin0i) exp(-iky cos0i) (2.2)

where k is the wavenumber, w is tilhe angular frequency, and Oi is the angle of incidence mea-
sured from the +v direction. By symmetry. the diffracted electric field vector will also be
parallel to the z axis: that is,

Ed(x.y,z,t) = [O,O,ELdz(X.y z)l cxp(--icot) (2.3)

4
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where now

Edz(x-y,z) = - ~ Am exp(+ikx sinOm) exp(iky cos0m). (2.4)

m=--

The coefficients Am are the unknown amplitude coefficients to be determined. The angles
,Om specify the direction of the propagation vectors associated with the various diffraction

orders and are determined by the grating equation, which is given by

sinOm + sin0i = m(X/a) (2.5)

where m is an integer, X is the wavelength, and a is the grating period.
Equation (2.4) represents the plane wave expansion of the diffracted field. It should be

noted that only a finite number of the plane wave expansion terms in Eq. (2.4) are associ-
ated with real homogeneous plane waves. The remainder of the plane wave expansion terms
are associated with evanescent waves. It is the real homogeneous plane waves that are of
interest because they are the ones whose energy is actually measured. The evanescent waves
are needed to satisfy the boundary condition at the surface of the grating. The boundary
condition to be satisfied at the grating surface for the TE case is that the tangential compo-
nent of the total electric field be identically equal to zero. Mathematically we have

Ez(x,v,z) Iy=f(x) = 0 (2.6)

where

Ez(x.y,z) = Eiz(x,y,z) + Edz(x,y,z). (2.7)

Substitution of Eqs. (2.2) and (2.4) into Eq. (2.7) gives

E, exp(-ikx sin0i) exp(-ikf(x) cos0i)

= S Am exp(+ikx sinO, ) exp(+ikf(x) cosOm). (2.8)
m =--0

Without loss of generality we may conveniently let E,) = 1.
With the use of the grating equation, Eq. (2.8) can be rewritten in the compact form

&i(x) = Am, exp(+i27rrmx/a),bm(x) (2.9)
DI = --

where the new functions qi(x) and 4 m (x) have been defined, for purposes of convenience,
by the equations

qi(x) = exp[-ikf(x) cosOil
;m (x) = exp[+ikf(x) cosO,, I. (2.10)
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Equation (2.9) is the fundamental equation for the transverse electric case that connects the
unknown amplitude coefficients Am to the wavelength X, the angle of incidence Oi, the grat-
ing constant a, and the groove profile function f(x). The problem now is to solve for these
unknown amplitude coefficients Am for all values of m. This is generally not possible be-
cause the functions contained in the infinite sum of Eq. (2.9) are not, in general, mutually
orthogonal. Thus we are forced to find an alternative technique for determining the un-
known amplitude coefficients.

The technique we have used is very similar to the one that Meecham' 0 has successfully
employed. In Meecham's approach he first defines a new function Xi(x) by the equation

max

Xi(X) = E
it~ J&&J

Bm exp(+i27rmx/a) ,m(X)

where max and min are finite integers. He then approximates the unknown coefficients Am
by the coefficients Bm for those values of m that are contained in the interval [min,max].
The coefficients Bm are determined by minimizing the mean square error between the func-
tions Xi (X) and ij(x). That is, by defining an error e according to the equation

C = (I/a) I f
0

Meecham determines
minimum. It can be
criterion is

max

m=min

Ixi(x) - ,i(X) 12 dx /> O,

the relationship involving the coefficients B,, for which the error e is a
shown (see Appendix) that the desired relationship that satisfies the

Cn ,,m B,1 , = D,l (min < n I max)

where

iCnm = (I /a) f exp [ + i27r(,m--n )x/a] ib.. (x) 4X (x) dx
TO

a

D, = (/ )/aO exp[-i27rllx/al i(x) 0*(x)dx.fo (2.14)

Thus the problem has been reduced to solving simultaneously a finite set of equations for
the coefficients B,,.

In our approach to the problem, we similarly define a new function Xi(x) as was done in
Eq. (2.1 1). Because the groove profile function J(.x) has period a, then so do the functions

6
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)/i(x), km (x), and Xi(x). This allows us to Fourier analyze these functions according to the
equations

00

Ai(X) = E b( i ) exp(-i27rrjx/a)
i-

o~- (I)x-i2rxa

qm (x) = M exp(-i27rlx/a)
1=- 0

xi(x) = E xi
j ) exp(-i27rjx/a).

Ji=o

(over all m) (2.15)

If we now substitute the Fourier representation of 4bi(x),
(2.15) into Eqs. (2.9) and (2.1 1), we obtain

E i J) exp(-i2irjx/a) = I I
j=_ m=-n I=-_oo

Z X i j )
exp(-i27rjx/a) =

I I

max

m=min

m,, (x), and Xi(X) as given by Eqs.

Am p(I l ) exp[-i27r(l-m)x/a]

(2.16)

By using the orthogonality property of the complex exponentials, it can be easily shown
that

44j) = (j+m)
1' ) Am k m

m=-_o

(i)
Xi =

max

I Bm Om
in=min

(over all j)

(2.17)

(over all j).

We now define a new error e' according to the equation

e = lx i) Ii) 1 2 > 0.

jo=-- 

(2.18)

We now want to find the relationship involving the coefficients Bm, that minimizes the mean
square error e'. It can be shown that the desired relationship is given by

max

c;,,, Bm= 0D,

m=min

(min < n < max) (2.19)

7
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where now

Cnm = Pm
C(-m) ~( -n) 

/:=- (2.20)

Dn = -i) {'i n *

Again the problem has been reduced to solving simultaneously a finite linear set of equa-
tions for the coefficients Bin. It turns out that the errors as defined by Eqs. (2.12) and
(2.18) are in all respects equivalent. Thus our approach and that of Meecham are equivalent
except for the fact that Meecham has done his analysis in the space domain whereas we have
done our analysis in the Folrier frenllencv domain. We personally feel that iour approach is
more suitable for computer usage because of the time saving afforded by recent computer
software for doing Fourier analysis.

2.1.2 Theory for the TM case

For the sake of completeness we present in this subsection the underlying theory for cal-
culating diffraction efficiencies when the magnetic field vector of the incident beam is paral-
lel to the grating grooves. The wave function associated with the incident field for this case
is given by

Hi(x.yz,t) = [O,OJjiz(x,Y.z)] exp(-iwot) (2.21)

where the time-independent part of the wave function is given by

Hiz(x,y,z) = Ho exp(-ikx sin0i) exp(-iky cos0i). (2.22)

Again k is the wavenumber, c is the angular frequency, and Oi is the angle of incidence.
By symmetry, the diffracted magnetic field vector will also be parallel to the z axis; that

is,

Hdj(x.,,:t) = [O,OIHdz(xw,.z)] exp(-iwt) (2.23)

where now

z(X )= - A,,, exp(+ikx sinO,, ) exp(+ikY cosO,, ). (2.24)

The coefficients A,,, are the unknown amplitude coefficients to be determined. The angles
Omn are again given by the grating equation.

The boundary condition that is to be satisfied at the grating surface for the TM case is
that the normal derivative of the tangential component of the total magnetic field be identi-
cally equal to zero. Mathematically we have

aLz(x.,Iz)l/Ia ll=x) = 0 (2.25)
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where

.Hz(x,y,z) = Hiz(x,y,z) + Hdz(x,y,z). (2.26)

It can be easily shown that the normal derivative operator is given by

a/an = [1 + (f'(x))2] -l [-f'(x)(alax) + (alay)]. (2.27)

Taking the normal derivative of Eqs. (2.22) and (2.24) and substituting the results into
Eq. (2.25) gives

H, ( '(x) sin0i - cos0i ) exp(-ikx sin0i) exp(-ikf(x) cos0i)

= Am (-f'(x) sinOm + cos0m) exp(ikx sin0m) exp(ikf(x) cos0m). (2.28)

Without loss of generality we may conveniently let Ho = -1. With the use of the grating
equation, Eq. (2.28) can be rewritten in the compact form

Oi( x) = E Am exp(+i2irmx/a)yim(x) (2.29)
m=-

where the new functions 4i(x) and lm (x) have been defined, again for purposes of con-
venience, by the equations

4i(x) = (f '(x) sin0i - cos0i) exp(-ikf(x) cos0i)

(2.30)
,n (X) = (J'(x) sinOm - cos0 m ) exp(+ikJ(x) cos0m) .

On comparing Eqs. (2.29) and (2.9) we see that these equations have identical form. There-
fore, the methods used in the last subsection for determining the unknown coefficients Am
can also be used in this subsection.

9
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3. COMPUTER PROGRAM

The mathematical formulation of the diffraction grating problem is given in section 2.
Based on this formulation a computer program was written to analyze such groove profiles
as echelette, rectangular, sinusoidal, and cycloidal. Owing to the complexity of the mathe-
matical calculations involved, the program was written in modular form; that is, the entire
task was divided into a number of smaller subtasks. These subtasks constitute, for example,
the generation of sampled values of the grating profile function, computation of the Fourier
transform of various functions, and the inversion of matrices. Computer subroutines were
written for each of the subtasks to be performed. Each subroutine was tested separately in
proper sequence and then integrated together by the main program, which forms the logic
center for the entire computer program. The main program consists mainly of call state-
ments for calling the various subroutines to do their respective tasks.

The inputs to the computer program are

X = wavelength
a = diffraction grating period
Oi = angle of incidence
f (x) = groove profile function
f''(x) = groove slope function,

and the outputs are

,, = order in diffraction angle
Bin = order in amplitude coefficient
,,= order in normalized intensity
¢,n = order in diffraction efficiency.

Normalized intensities are quantities that can be experimentally measured. The normal-
ized intensity associated with the mtl' diffraction order is defined by the equation

lIm = IBm 12/ E B, 12 (3.1)
n

Only those amplitude coefficients B,,. associated with the real or homogeneous diffraction
orders are considered in the above definition.

To theoretically check on the accuracy of the computer calculation,"' we can use the
relationship

A 1A,, 12(cos0,,/cOsOi) = 1, (3.2)
ill

which is derived from the conservation of energy law, where the term IA,n 12(cosOnl/cosOi)
represents the exact diffraction efficiency associated with the mt/l diffraction order. The
above sum is, again, restricted only to those orders that are real. The calculated diffraction
efficiency for the nmth order is given by

,,, = IB,n 12 (cos0, n cosOi ) . (3.3)
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The sum of the calculated diffraction efficiencies compared with unity serves as a check on
the accuracy of the computer calculation.

After the computer program was written, a number of test cases were run to obtain re-
sults that could be directly compared with those already published in the literature (see sub-
section 3.1). Finally, we also studied the region of validity of our theory based on a total en-
ergy conservation check. Presented in subsection 3.2 are the results connected with the
energy conservation check.

3.1 Test Cases

Several test cases were run and the results were compared with those published in the
literature. Following is the comparison of results.

Test Case I: As a first check on the accuracy of the computer program, we compared the
test results we obtained with those obtained by Meecham and Peters' 2 for the E-parallel
state of polarization. The groove profile considered was an echelette type as shown in Fig.
3.1. The inputs were

X = 1.33 inches (microwave wavelength)
a = 1.75 inches
Oi = variable
, = 90.0°

= 8.2° .

The outputs were the normalized intensity values Im. The comparison of results is shown in
Fig. 3.2. Also included are experimental results that Meecham and Peters' 2 published as a
comparison between theory and experiment.

Fig. 3.1. Echelette grating profile.
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Test Case II: As a second check on the computer program, we compared test results we
obtained with those predicted by the integral equation approaches of Kalhor and
Neureuther8 and Petit.1 3 The grating profile considered was again an echelette type, Fig.
3.1. For this case the inputs to the computer program were

X = 0.546 pum (optical wavelength)
a = 1.250 gm

Oi = 0.0°

~I = 162.9° , 146.60, 90.0°

a = 8.50, 16.70, 45.00.

The outputs were the normalized intensity values Im. The comparison of results is tabulated
in Tables 3.1 and 3.2. Table 3.1 corresponds to the E-parallel state, and Table 3.2 corre-
sponds to the H-parallel state of polarization. Also included for comparison are the total dif-
fraction efficiencies associated with each of the calculations. Due to the symmetry involved
in this case, the normalized intensity of the -mth order is identical to the normalized inten-
sity of the +mth order. Therefore, only normalized intensity values associated with the posi-
tive orders have been tabulated.

Table 3.1 Normalized intensity coefficients
for the E-parallel case.

Total
Grating Investigator I o I, 12 efficiency

hb=162.9 Kalhor 0.671 0.156 0.008 1.000
(x=8.5 & Petit 0.671 0.157 0.008 0.999

Optical Sciences 0.667 0.159 0.008 1.000

k=146.6 Kalhor 0.153 0.335 0.089 0.999
oa=16.7 Petit 0.151 0.334 0.090 0.999

Optical Sciences 0.152 0.335 0.089 0.998

;=90.0 8 Kalhor 0.347 0.081 0.246 0.995
(x=45.0 Petit 0.333 0.083 0.250 1.034

Optical Sciences 0.280 0.100 0.260 0.672

Table 3.2 Normalized intensity coefficients
for the H-parallel case.

Total
Grating Investigator I o 11 12 efficiency

= 162.9) Kalhor 0.609 0.174 0.022 1.001
a0=8.5 I Petit 0.617 0.177 0.014 0.997

Optical Sciences 0.606 0.173 0.024 1.000

4=146.6} Kalhor 0.098 0.247 0.204 0.977
Oa=16.7 Petit 0.098 0.243 0.208 0.994

Optical Sciences 0.099 0.244 0.206 0.996

=90 0 8 Kalhor 0.689 0.043 0.113 1.006
ot=45.0 Petit Results not available

Optical Sciences 0.535 0.014 0.218 0.452
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Test Case III: As a third check on the computer program, we compared the test results we
obtained with those predicted by Maystre and Petit.7 The grating profile considered was
that of a cycloid as depicted in Fig. 3.3. The cycloid profile has been used as an approxima-
tion to one type of holographic grating profile and is described mathematically by the set of
parametric equations

f(x) = B + B cos(27ru/a)

x = u + A sin(2rru/a) (3.4)

where it is the parameter. The inputs to the program were

X = 0.450 um (optical wavelength)
U 0. U11 1pG

O = -10.5 °

A = 0.069 /m
B = 0.092,0.138,0.185, 0.231 gm.

Only the E-parallel state of polarization was considered for this test case. The output was
the diffraction efficiency for the -l1 t order. Table 3.3 contains the comparison of the re-
su ts.

Fig. 3.3. Cycloidal grating profile.

Table 3.3. - 1 st order diffraction efficiency
for the E-parallel case.

Grating Investigator

A =0.069 Petit 0.212
B = 0.092 Optical Sciences 0.233

A = 0.069 Petit 0.425
B = 0.138 Optical Sciences 0.416

A = 0.069 Petit 0.5 25
B = 0.185 Optical Sciences 0.553

A = 0.069 Petit 0.675
B = 0.231 Optical Sciences 0.612
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Test Case IV: As a final check on the program we again compared our test results with
those published by Maystre and Petit.7 The cycloid grating profile was the profile of in-
terest. The inputs were

X = 0.450,um (optical wavelength)
a = 0.769/am
Oi = variable
A = 0.069/um
B = 0.092/am.

The output to the computer programs was the diffraction efficiency of the -1st order. Fig-
ure 3.4 shows the efficiency of the -1st order for various angles of incidence for the
E-parallel state of polarization. Similarly, Fig. 3.5 shows the results for the H-parallel state
of polarization.

3.2 Energy Conservation Check

In order to further evaluate the region of validity of the E-parallel and H-parallel calcula-
tions, we investigated the influence that groove depth has on the accuracy of the computer
calculations. This investigation is important because in any correct calculation the total dif-
fraction efficiency must be equal to unity. The departure of total efficiency from unity
serves to indicate where the calculation ceases to be useful. For this investigation we chose a
symmetrical echelette grating profile for the analysis. Eight test cases were run. The distinc-
tion between these test cases is summarized in Table 3.4. There were two independent vari-
ables of interest. The first was the groove-depth-to-wavelength ratio and the second was the
groove-depth-to-grating-period ratio. The latter ratio is proportional to the absolute slope of
the grating facets for the symmetrical echelette case. The dependent variable of interest is
the total diffraction efficiency. Again the total diffraction efficiency serves as an energy
conservation check. For total efficiency values near unity we consider the predicted values
of the individual diffraction order efficiencies to be reliable. Total efficiency values differing
greatly from unity indicate where the underlying theory is breaking down. Summarized in
Figs. 3.6 through 3.9 are the results of these eight test cases. The total efficiency has been
plotted against both the groove-depth-to-wavelength ratio and the groove-depth-to-grating-
period ratio.

Table 3.4 Analysis of symmetrical echelette
grating for eight test cases.

Test Polarization Grating Incidence Absolute
case state constant Wavelength angle (deg) slope

I E-parallel 1.4 1.0 0.0 0.0 to 1.0
II H-parallel 1.4 1.0 0.0 0.0 to 1.0

111 E-parallel 5.0 1.0 0.0 0.0 to 1.0
IV H-parallel 5.0 1.0 0.0 0.0 to 1.0
V E-parallel 1.4 1.0 80.0 0.0 to 1.0
VI H-parallel 1.4 1.0 -80.0 0.0 to 1.0
VII E-parallel 5.0 1.0 -80.0 0.0 to 1.0
VIII H-parallel 5.0 1.0 -80.0 0.0 to 1.0
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Fig. 3.5. Efficiency of the - 1 st order for various angles of incidence for
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3.3 Conclusions

The agreement between our results and those published in the literature are, in general,
rather good. There is one case, namely the symmetrical echelette (a = 450°,V = 90°), where
the agreement is poor although a similar trend is definitely apparent. Again, the basis of our
computer program is the assumption that the diffracted field can be represented as a super-
position of plane waves with constant amplitude coefficients. As is discussed in the disserta-
tion by Kalhor,' 1 this assumption is not valid for diffracted fields within the groove region;
that is, the plane wave amplitude coefficients depend upon spatial position within the
groove region. But this assumption is rather good for shallow groove gratings as is evident
from the results.

The results of the energy conservation check give us an idea about the region of validity
of the plane wave theory with constant coefficients. For normal incidence, the plane wave
theory breaks down for groove-depth-to-grating-period ratios greater than about 0.25 for
both the E-parallel and H-parallel polarization states. For grazing incidence, the E-parallel
case does quite well for groove-depth-to-grating-period ratios as large as 0.5. The H-parallel
case breaks down immediately for the case of grazing incidence. Thus the plane wave theory
has a smaller region of validity for the H-parallel polarization state than for the E-parallel
polarization state. But within the region of validity, the plane wave theory is as acceptable
as the integral-equation approaches of either Kalhor or Petit.
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4. POLARIZING GRATINGS

One of the goals of interest in diffraction grating analysis is to design a diffraction grating
that will polarize the light in a prespecified diffraction order for any arbitrary state and/or
degree of incident polarized light.

4.1 Discussion

The profile chosen for this investigation was that of an echelette as shown in Fig. 4. 1. A
geometrical argument was used to determine the initial values of the angle of incidence,
wavelength, and grating period in terms of the base angle a for the case when light would be
completely polarized in a prespecified order.

Fig. 4.1. Echelette grating profile.

We chose the apex angle J' to equal 900 and the angle of incidence Oi to equal -a. We
then considered the case when the magnetic field vector of the incident wave is parallel to
the grooves of the grating. The incident electromagnetic field interacts with the diffraction
grating in such a manner that each elemental unit of charge induced on the surface of the
grating effectively behaves as a dipole radiator. The axes of these dipole radiators lie in the
plane orthogonal to the grating grooves and point in the direction 90° - a. If we now
choose one of the diffraction angles to be equal to 900 - a, then little or no energy should
be radiated into the corresponding order for this state of polarization because dipole radia-
tors do not radiate along their axes.

To test the geometrical argument, consider the following example. Let the diffraction or-
der of interest be the +l s t order. According to the geometrical argument,we have

Oi = -a
01 = 90 -. (4.1)

Using the grating equation yields the result

X/a = cosa - sina. (4.2)

Thus if we choose the base angle a, the wavelength X, and the grating period a to satisfy Eq.
(4.2), then, according to the geometrical argument, the diffraction grating should behave as
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a linear polarizer in the +1St diffraction order. For example, when unpolarized light is inci-
dent, it may be decomposed into a component lying entirely in the plane of incidence and
another component perpendicular to the plane of incidence. The component in the plane of
incidence (H-parallel) will yield no contribution in the +1st order. When a similar reasoning
is followed for the component perpendicular to the plane of incidence (E-parallel), it may
be easily shown that it will in general yield a nonzero contribution of energy in the +1st
order. The energy distribution of this order for this polarization is not predicted by the geo-
metrical argument. It can only be predicted by a wave theoretic calculation.

We now turn our attention to a specific computer calculation based on the preceding dis-
cussion. Suppose we wish to design an echelette profile diffraction grating so that no energy
appears in the + Ist order for the H-parallel state of polarization at a wavelength of 0.5 /Um.
Suppose we also arbitrarily choose the grating period to be equal to 0.6375 /xm. Then
according to Eq. (4.2) we should choose oa = 11.3° . Thus the initial inputs to the computer
program are

0i = - 11.3
X = variable
a = 0.6375 um
ao = +11.30
Jb = +90.0 ° .

Summarized in Figs. 4.2 and 4.3 are the results of this calculation. Plotted in these figures
are the normalized intensity values for the real orders versus the wavelength X. Figure 4.2
corresponds to the E-parallel case, and Fig. 4.3 corresponds to the H-parallel case. We see
from Fig. 4.2 that the normalized intensity associated with the +ls t order has a fairly con-
stant value for those wavelengths indicated. From Fig. 4.3 we see that the normalized inten-
sity associated with the +Ist order goes to zero but at a shorter wavelength than predicted
by the geometrical argument.

4.2 Conclusions

The geometrical argument presented in subsection 4.1 has allowed us to predict, before
making any computer calculations, the wavelength and diffraction order in which the dif-
fracted light would be completely linearly polarized. By working in the neighborhood of
this wavelength, we showed that the intensity of the +1St order for the H-parallel case does
indeed go to zero but at a shorter wavelength than geometrically predicted.

A similar shift in wavelength has been reported by Kalhor.' ' For a given echelette grating,
Kalhor predicted with a geometrical argument the wavelength, angle of incidence, and dif-
fraction order at which maximum blazing should occur. He tested his prediction with a com-
puter program based on a rigorous electromagnetic theory. By working in the neighborhood
of the predicted wavelength, he showed that maximum blazing actually occurs but at a
smaller wavelength. Thus we have another example of a model based on only geometrical
considerations that was used to give insights about a phenomenon. Therefore, the use of
such a tool in grating design does indeed have significant importance.
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5. BLAZED GRATINGS

One of the most important uses of diffraction gratings is for the spectroscopic study of
light emitted from various types of light sources. The spectrum is usually observed in one
diffraction order only, and light that is diffracted into the other orders may be considered to
be wasted. Therefore, in spectroscopic applications, it is desirable to concentrate as much of
the incident light energy into a single dispersive diffraction order. Gratings that have this
property are referred to as blazed diffraction gratings. In contrast, unblazed gratings allow a
large fraction of the incident light energy to reappear in the nondispersive zero diffraction
order. In this section we will be concerned with the design of blazed diffraction gratings.

5.1 Discussion

In the design of blazed diffraction gratings we first determine the wavelength for which
the grating is to be blazed. We then choose values of the grating constant and the angle of
incidence so that there are only two real diffraction orders, namely the nondispersive zero
order and the dispersive - Ist order. We thereby reduce the number of real orders competing
for the energy initially contained in the incident beam of light. Next the groove profile
parameters, the angle of incidence, and the grating period are varied to optimize the case
when a large fraction of the incident light energy is diffracted into the -1st order.

Two echelette grating profiles were considered in the blazed grating analysis: a mechani-
cally ruled 90° echelette and an echelette with rounded edges (see Fig. 5.1). Sheridon' 
reports that diffraction gratings with rounded edges have been made from photoresist ma-
terials by means of the holographic process.

B

A C
With angular edges Fig. 5.1. Two echelette grating profiles that

were considered in the blazed grating
analysis.

Rb

With rounded edges

5.1.1 Echelette grating profile

The grating profile we initially chose to analyze was the echelette type. A geometrical
argument was used to pick the initial values of the angle of incidence and the grating con-
stant to begin the computer analysis. For echelette diffraction gratings, the geometrical
argument says that blazing of order in occurs when the rays reflected from one of the grat-
ing facets of the grooves have the same direction as the grating order m. For our analysis the
diffraction order of interest is the -lSt order.
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Referring to Fig. 5.1, we choose the angle of incidence at which an incident ray strikes
the facet AB at a normal. Therefore, the angle of incidence is initially given by

i
= -a. (5.1)

According to the geometrical argument the incident rays will be reflected back into the
direction from which they came. Therefore, we choose the direction of the -1st order
according to

0_ = -a. (5.2)

Substituting Eqs. (5.1) and (5.2) into the grating equation for m = -I yields

A/IU = lsiIiu. (5.3)

In order to guarantee that the -1 s
t order and the zero order are the only two real diffrac-

tion orders, we must be sure that the inequality

A/a > 2/3 (5.4)

is satisfied when Eq. (5.3) is used. For wavelength-to-grating-period ratios less than 2/3 it
can be easily shown that at least three diffraction orders will be real. If we arbitrarily choose
the base angle a to be equal to 300, then from Eq. (5.3) we find

X/a = 1.000, (5.5)

which satisfies inequality (5.4). Thus, for a base angle of 30° , the geometrical argument pre-
dicts that maximum blazing will occur in the -- t order if the grating period is chosen to be
equal to the wavelength of interest.

Next we must test the validity of the geometrical argument by using the computer to cal-
culate the energy distribution in the - Ist order. The necessary inputs to the computer pro-
gram for this test are

ar = 300
i; = 90°

Oi = -30°

X/a = variable.

The computer analysis was restricted to the E-parallel state of polarization only. The calcu-
lation was attempted for the H-parallel case, but the results were rejected because of a large
departure of the total efficiency from unity. The results of this initial calculation are shown
in Fig. 5.2,where we plot the normalized intensity for the - s t order versus the ratio (X/a).
We see that a large fraction of the total energy is indeed contained in the -1st order but
that the curve is a maximum at the ratio 0.786 and not at the geometrically predicted ratio
of 1.000. The value of the normalized intensity for the -1 t order at the ratio 0.786 for this
calculation is equal to 0.88, a fairly large value.
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Kalhor1" reported similar results obtained for an echelette grating with base angles of
25.5° and 64.5° . He showed that the intensity associated with the -1 s t order was a maxi-
mum at a shorter wavelength than that predicted by the geometrical argument. He did not
optimize his solution by varying other parameters. Based on the calculations he did make,
he concluded that about 90% of the incident energy could be diffracted into the -1st order.
He considered the E-parallel state of polarization only.

We continued with our analysis in order to further optimize the solution. We chose the
wavelength-to-grating-period ratio to be 0.786 and varied the angle of incidence to see if
angles of incidence other than -30.0° might give higher values of the normalized intensity
for the -1st order. We found in fact that -19.0° was a more desirable angle of incidence to
use. Next we chose the angle of incidence to be -19.0° and varied the wavelength-to-
grating-period ratio to see if still further improvement could be made. Continuing in this
manner allowed us to converge upon a solution for which 99% of the incident light energy
reappeared in the -I s t order. The angle of incidence and the wavelength-to-grating-period
ratio for which this maximum blazing occurred were found to be

0i = -19.47122°

X/a = 0.66667.

Figure 5.3 is a plot of the normalized intensity versus the wavelength-to-grating-period
ratio for the -Ist order for the E-parallel state of polarization. The ratio 2/3 and the angle
of incidence -19.47122 ° define a double Wood's anomaly condition for the +1st and - 2 nd
diffraction orders. That is, when the wavelength-to-grating-period ratio is equal to 2/3 and
the angle of incidence is equal to -19.471220, we find that both the +Ist and - 2 nd diffrac-
tion orders are simultaneously changing from evanescent to real diffraction orders. This can
be seen by using the grating equation for m = +1 and m = -2 with 0+1 = +90.0° and
0 - 2 = -90.0 . That is,
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sin(+90.0° ) + sin0i = +I(X/a) (5.6a)
sin(--90.0° ) + sinQ i = -2(X/a) (5.6b)

or equivalently

+1.0 + sinO i = +I(X/a) (5.7a)
-1.0 + sin0i = - 2(X/a). (5.7b)

Adding Eqs. (5.7a) and (5.7b) yields

X/a = -2sinO i. (5.8)

Equation (5.8) is the Bragg equation, which has been used by Hessel and Shmoys' s in the
design of blazed diffraction gratings with rectangular profiles. If we subtract Eq. (5.7a) from
Eq. (5.7b), we find

X/a = 2/3. (5.9)

Substituting this ratio back into Eq. (5.7a) gives

sin0 i = --1/3, (5.10)

which yields

Oi = sill'(- 1/3) = 19.47122° . (5.11)
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Thus we have established that an echelette grating exhibits excellent blazing properties in
the region of the double Wood's anomaly associated with the +1St and - 2 nd diffraction
orders for the E-parallel state of polarization. This result we propose to publish in the Jour-
nal of the Optical Society of America.

5.1.2 Echelette grating profile with rounded edges

The second grating profile that we investigated, in terms of its blazing properties, was that
of an echelette with rounded edges. As was previously indicated, gratings with this type of
profile have been made from photoresist material using the holographic process. This profile
is depicted in Fig. 5.1. Four quantities are needed to specify the rounded echelette profile.
These quantities are the angles ao and ; and the radii Ra and Rb . We note that when Ra and
Rb are zero a perfect echelette with no rounded edges results. It was shown in the previous
section that an echelette grating with a base angle of 30.0° and an apex angle of 90.00 ex-
hibits excellent blaze properties in the neighborhood of a double Wood's anomaly for the
E-parallel state of polarization. We were interested to see what effect rounding the edges
would have on the blaze properties of an echelette grating. Thus we ran similar test cases as
was done in the previous section. The inputs to the computer program were

0i = - 1 9.47122 °

a = 30.0°

= 90.0°

X/a = variable
Ra/a = 0.07, 0.14, 0.21
Rb/a = 0.07, 0.14, 0.21.

The results of this calculation are summarized in Figs. 5.4, 5.5, and 5.6. In each of these fig-
ures is plotted the normalized intensity for the -1st order versus the wavelength-to-grating-
period ratio for the E-parallel state of polarization. First let us look at Fig. 5.4, which cor-
responds to the case when Ra/la = Rb/a = 0.07. Comparing the plot in this figure with the
plot in Fig. 5.3 for the perfect echelette, we see that the plots are nearly identical. Again the
curve is a maximum at a wavelength-to-grating-period ratio of 2/3 with a value of 0.985. Fig-
ure 5.5 corresponds to the case when Ra/a = Rb/a = 0.14. The maximum value of the curve
has dropped to 0.970. The results for the worst rounded case are presented in Fig. 5.6.
Referring to this figure we see that the curve has a maximum value of 0.910, a rather large
value. It is noted that an echelette grating with a= 30 ° , i = 900, and Ra/a = Rb/a = 0.21
has only 50% of the flat facet area of a perfect echelette with no rounding. Also this
rounded echelette is the shallowest of the gratings analyzed. For this reason the worst
rounded echelette could be analyzed for the H-parallel state of polarization. The results are
presented in Fig. 5.7. We see from this figure that the rounded echelette has excellent blaze
properties over a large wavelength region.
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5.2 Conclusions

The following conclusions were drawn based on the results of the analysis done in this
section.

A. Geometrical arguments are very useful in the preliminary design stages of blazed dif-
fraction gratings. These arguments are used to choose initial values of the various grating
parameters needed to begin the computer analysis. These parameters are then varied inside
of the computer in order to find the optimum solution.

B. Echelette profiles with and without rounded edges exhibit excellent blaze properties in
thp vicinitv rf th dniilhlp Wrnood's annmal asvnriatepd uwith the +4- t and the -2nd diffrac-

tion orders. The conditions necessary for the existence of this double Wood's anomaly are

0i :: sin-'(-1/3) = -19.471227
X/a = 2/3 = 0.66667.

For a perfect echelette profile it was shown that on the order of 99% of the energy in the
incident wave reappeared in the dispersive -1st order for the E-parallel state of polarization
in the anomalous region. For the echelette profile with the worst rounding it was shown
that on the order of 91% of the energy in the incident beam reappeared in the -1S

t order
for both the E- and H-parallel states of polarization. Thus, echelette gratings with rounded
edges, which can be made holographically, do indeed exhibit excellent blaze properties.
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APPENDIX

MEAN SQUARE ERROR MINIMIZATION

In this appendix we outline how to obtain Eq. (2.13) of the text, namely

max

E ClnmBm = Dn (min < n < max).

m=min

This relationship determines Bm so that the error e as defined in Eq. (2.1 2), namely

e = (I/a) J oX i (x)- I/i(x)l 2 dx > 0,

is minimized.
We propose to minimize the mean square error e by differentiating e with respect to B*

and setting the result equal to zero. B* is the complex conjugate of Bm. The coefficients
Bm are part of the definition of the function Xi(x), Eq. (2.1 1). This differentiation does not
affect the coefficients Bm of Xi(x) because Bm and B* are linearly independent.

Substituting the complex conjugate of Eq. (2.1 1) into Eq. (2.12) and rearranging gives

max

e = B*(ll/a) Xi(x)M*(x) exp(-i27rmx/a)dx

m=min

max

- EBM(1/a) |fo pii 4�(-*(x) expt-i2nrmx/a)dx

n=min

+ ( I /a) i(x)i*(x)dx

-(Il/a) f Xi(x)i*(x)dx. (Al)

The total differential of e is

max

de = (ae/B,*)dBn*. (A2)

n=min
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Because we are interested in minimizing e, then we see that de is equal to zero, which
implies

3elaB* = 0 (min < n < max).

Thus, differentiating e of Eq. (Al) with respect to B* and setting the result equal to zero
yields

( I/a) fo Xi(X)Vqn*(x) exp(-i27rnx/a)dx

= (1/a) / iqi(x)w4*() exp(-i27rnx/a)dx. (A3)

In the above expression on the left side we substitute the expression for Yx(x) from Eq.
(2.1 1) in the text. We obtain

max

E Cnn Bill = Di, (min < n < max) (A4)

in=mill

where we defined

Cnm = (l/a) exp[ -i27r(n - m)x/a] ;*(x)oq,.(x)dx

D,, = (I/a)f cxpL--i/27rx/aI q*(x)Oi(x)dx.

Equation (A4) is the desired result.
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